سال انتشار: ۱۳۹۲
محل انتشار: همایش ملی مهندسی کامپیوتر و توسعه پایدار با محوریت شبکه های کامپیوتری، مدل سازی و امنیت سیستمها
تعداد صفحات: ۹
نویسنده(ها):
محبوبه مهدی زاده – دانشجوی کارشناسی ارشد هوش مصنوعی دانشگاه شهید باهنر کرمان
مهدی افتخاری – عضو هیات علمی دانشگاه شهید باهنر کرمان

چکیده:
در مسائل طبقه بندی تعداد نمونه های هر کلاس می تواند متفاوت باشد در مسائل طبقه بندی باینری، مساله عدم توازن هنگامی رخ می دهد که یک کلاس تعداد نمونه های بسیاری دارد در حالی که کلاس دیگر توسط تعداد نمونه های کمی نمایش داده می شود. در این مقاله بر روی روش های under-sampling (نمونه گیری از داده های با کلاس اکثریت) تمرکز می کنیم در روش پیشنهادی ابتدا با استفاده از روش خوشه بندی کاهشی، نمونه های اکثریت را به تعدادی خوشه تقسیم و سپس با رتبه بندی نمونه های هر خوشه، تعدادی نمونه انتخاب می کنیم. نمونه های اکثریت انتخاب شده با همراه نمونه های اقلیت، مجموعه داده نهایی را تشکیل می دهند. آزمایش را بر روی ۲۰ مجموعه داده از مجموعه داده های KEEL اجرا و سپس نتایج بدست آمده را با استفاده از تست های آماری تحلیل می کنیم. نتایج حاصل نشان می دهد که کارایی الگوریتم طبقه بندی با استفاده از روش پیشنهادی بهبود می یابد.