سال انتشار: ۱۳۸۵

محل انتشار: هشتمین کنفرانس ماده چگال

تعداد صفحات: ۴

نویسنده(ها):

محمد اخوان – آزمایشگاه تحقیقاتی مغناطیس (MRL) ، دانشکده فیزیک، دانشگاه صنعتی شریف، ته

چکیده:

دو دهه از کشف ابررسانایی دمای بالا در ترکیب La-Ba-Cu-O توسط بدنورز و مولر در آزمایشگاه IBM زوریخ می گذرد . در این مدت فیزیک ماده چگال، شیمی مواد و علم مواد تجدید بنا شده اند . دمای گذار از ۲۳ k به ۱۶۵ k ) 138 k با اعمال فشار ) رسیده است و هیچ سقفی برای دمای گذار قابل پیش بینی نیست . تصور وجود ابررسانایی در دمای اتاق به راستی بسیار هیجان انگیز است . در این صورت، انقلابی که در جهان صنعت و فناوری رخ خواهد داد بسیار عظیم تر از انقلابی است که به دلیل کشف ترانزیستور در طول نیم قرن گذشته رخ داده است . کشف ابررسانایی دمای بالا در سال ۱۳۶۵ با پیش زمینه ای از کشفیات دیگر امکان پذیر شد، مانند گروه A -15 در سال ۱۳۳۳ و فاز شورل در سال .۱۳۵۰ این مواد بالاترین دمای گذار و میدان بحرانی، طول همدوسی بسیار کوچک، همزیستی ابررسانایی و پادفرو مغناطیس، ساختار پرووسکایتی، زنجیره های تک بعدی و ناپایداری ساختاری را به همراه دارند . مضافا، دانشمندان روسی در اوایل دهه ۱۳۵۰ موادی با ترکیب لنتوم و اکسید مس همانند ترکیب زوریخ را ساختند، ولی به دلیل در اختیار نداشتن هلیوم مایع هیچگاه به مرحله آزمایش در دمای پایی نرسیدند و یا دانشمندان فرانسوی در ۱۳۶۴ یک حالت فلزی را در ترکیب La-Ba-Cu-O گزارش دادند ولی هیچگاه در جستجوی ابررسانایی، دما را پایین نبردند . این ترکیب نقطه عطف کشف ابررسانایی دمای بالا در سال بعد شد . تا کنون صدها ترکیب ابررساناهای دمای بالا مسی شامل هشت خانواده اصلی ساخته و مشخصه یابی شده اند . به دلیل این تحقیقات مسائل جدیدی در فیزیک سرفصل جدی در فهم بهتر از طبیعت شده است مانند گاف القایی، شبه گاف، گذار فلز – عایق، تقارن – d موجی، سازوکارهای متفاوت در جفت شدگی و همدوسی فاز، نوار پادفرومغناطیس، پارامترهای نظم متفاوت داخلی و چگالش بور – اینشتین، دماهای
متفاوت برای جفت شدگی و همدوسی فاز، مدولاسیون دینامیکی بار ( حفره ) و اسپین، جداشدگی بار و اسپین، جنبه های بعدپذیری، پیوندگاه های ذاتی جوزفسون، و نقطه بحرانی کوانتومی، اگرچه اکنون جنبه های بسیاری از فیزیک و شیمی این ابررساناهای مسی با همبستگی قوی به خوبی فهمیده شده اند، سازوکار جفت شدگی الکترونها همچنان مبهم است . اکنون مشخص شده است که موضوع ابررسانایی را می توان به دو شاخه ابررسانایی متعارف نوع BCS و غیرمتعارف نوع جدید شامل ابررساناهای دمای بالا، فرمیون سنگین، گروه A -15 ، یک بعدی آلی و فاز شورل تقسیم کرد . در عین حال، ابررساناهای دمای بالا پرووسکایتی یک شاخه از گروه وسیعتری از اکسیدهای لایه ای به همراه روتنوکویراتها و منگنایتها / نیکلایتها با ساختارهای لایه ای مشابه به ترتیب ابررسانا – عایق – ابررسانا، فرومغناطیس – عایق – ابررسانا – عایق – فرومغناطیس، و فرومغناطیس – عایق – فرومغناطیس است . سابقه ابررسانایی در اکسیدها به کشف SrTiO3 در سال ۱۳۴۳ برمی گردد . سه گروه ابررساناهای اکسیدی وجود دارد : SrTiO3 و LiTi2O4با دمای گذار۱۳ k تا ۰/۲ k بیسموتی هاBaBi(Pb/k)O3 ، با دمای گذار ۱۳ k تا۳۲ kو کوپراتهای لایه ای با دمای گذار ۳۲ kتا k138. آیا گروه چهارمی نیز وجود دارد که دمای گذار آن از ۱۳۸kشروع شد تا شاید به دمای اتاق یا بالاتر برسد؟ نمی توان پیش بینی کرد که دنیا باید منتظر چه مسائل غیرمنتظره ای باشد . غیرقابل پیش بینی بودن زیبایی علم است !
در طول سیزده سالی که از بازپس گرفتن و بازسازی آزمایشگاه تحقیقاتی مغناطیس می گذرد، کار ماعمدتا بر روی مسائل بنیادی و ناهنجاری های ابررساناهای دمای بالای مسی به صورت تجربی و محاسباتی متمرکز بوده است مانند ابررسانا نشدن سیستم ۱۲۳ با پایه Pr ،Ce و یا Tb، نقش الکترون – فونون در جفت شدگی کوپر و همچنین دلیل بهینه بودن جایگزینی جزئیCe به جای Gdدر روتنوکویراتها، و جایگزینی های متفاوت در در منگنایت ها . این تحقیقات نتایج مطلوبی را در رابطه بین ابررسانایی و مغناطیس و اثر میدان مغناطیسی بر سازوکار هدایت حاملین و در نتیجه کاربردهای فراوان آنها در صنعت و فناوری دربرداشته است . شاید قابل ذکر باشد که این موفقیتها تحت سخت ترین شرایطی که با توجه به قطع بودجه تحقیقاتی آزمایشگاه در طول هفت سال گذشته بر ما تحمیل شده به وقوع پیوسته است .