سال انتشار: ۱۳۸۵

محل انتشار: دهمین همایش انجمن زمین شناسی ایران

تعداد صفحات: ۱۲

نویسنده(ها):

اصغر اصغری مقدم – دانشیار گروه زمین شناسی، دانشکده علوم طبیعی، دانشگاه تبریز
عطاا… ندیری – دانشجوی کارشناسی ارشد هیدروژئولوژی، دانشگاه تبریز
الهام فیجانی – دانشجوی کارشناسی ارشد هیدروژئولوژی، دانشگاه تبریز

چکیده:

مدلسازی آبهای زیرزمینی در سازندهای سخت، یکی از موارد بسیار پیچیده و مهم در مطالعات هیدروژئولوژیکی است. آبخوانهای تشکیل یافته در این سازندها در برابر آلودگی و کاهش ذخیره آبخوان (به ویژه در اثر برداشت بیش از حد) بسیار آسیب پذیر می باشند. هدف این مقاله ارزیابی و مقایسه توانایی مدلهای مختلف شبکه های عصبی مصنوعی ARTIFICIAL NEURAL NETWORKS (ANN)برای پیش بینی سطح ایستابی در مناطقکارستی می باشد. بدین منظور به علت عدم دسترسی به داده های کامل در داخل کشور، آبخوان آزاد و آهکی شمال فرانسه که توسط لالاهم و همکاران در سال ۲۰۰۴ به وسیله شبکهMLPو الگوریتم انتشار خطا به عقب (BP) مدل شده و از داده های نسبتاً کاملی بر خوردار است، به عنوان محدوده مطالعاتی مورد استفاده قرار گرفت.برای مدلسازی این آبخوان از داده های نزدیکترین ایستگاههای سینوپتیک، سطح ایستابی در پیزومترها و شرایط تکتونیکی، زمین شناسی و هیدروژئولوژیکی منطقه مورد مطالعه استفاده گردیده است. مدلسازی سطح ایستابی آبخوان آزاد مذکور در پیزومتر منتخب(شماره ۲۶ ) توسط شش نوع دیگر از مدلهای مختلف شبکه عصبی مصنوعی صورت گرفت. در این مقاله چهار موضوع کلی شامل: الف) تعیین عوامل موثر بر تغییرات سطح ایستابی در آبخوان های آهکی، ب) تعیین مقدار تاخیر زمانی عوامل موثر بر تغییرات سطح ایستابی ج) پیش بینی سطح ایستابی در
پیزومتر منتخب و د) انتخاب بهترین مدل، مورد بررسی قرار گرفته است. از میان مدلهای شبکه عصبی مصنوعیمورد بررسی، شبکه پیشرو(FNN) با الگوریتم LMبه عنوان بهترین و منطقی ترین مدل با کمترین خطا انتخابشد و توانایی بالایی برای مدلسازی آبخوانهای آهکی نشان داد.