سال انتشار: ۱۳۸۷

محل انتشار: اولین کنفرانس بین المللی بحران آب

تعداد صفحات: ۱۳

نویسنده(ها):

سید محمد حسینی – دانشجوی کارشناسی ارشد اقلیم شناسی، دانشگاه اصفهان
رضا برهانی – اداره کل هواشناسی استان خراسان جنوبی

چکیده:

مسئله تخمین و پیش بینی زمان و مقدار آبدهی رودخانه ها بعد از بارندگی های سیل آسا از نقطه نظر ایمنی، مسائل زیست محیطی و مدیریت منابع آب حائز اهمیت می باشد. در حال حاضر از روش های ریاضی متعددی برای پیش بینی آبدهی رودخانه استفاده می شود اما انتخاب مدل هایی که تا حد امکان به واقعیت موجود در حوضه نزدیک باشد بسیار مشکل است. در سال های اخیر از شبکه های عصبی مصنوعی(ANN) به طرز قابل توجهی در شبیه سازی فرایندهای مختلف استفاده شده است .در این مطالعه از نرم افزارMATLAB7 و در شاخهNeural Networkبرای پیش بینی جریان خروجی حوضه آبریز هامون با استفاده از داده های هیدرومتری و هواشناسی (بارش، دبی، دمای مینیمم) در مقیاس زمانی ماهانه و به طول آماری ۲۵ سال استفاده شده است. اطلاعات ۲۱ سال برای آموزش مدل ها و ۴ سال باقیمانده برای تست آن ها بکار رفته است. شبکه مورد استفاده از نوع پرسپترون چند لایه(MLP)با الگوریتم پس انتشارِخطا (BP)و تکنیک یادگیری مارکوارت- لونبرگ(LM) می باشد. نتایج حاصل از تحقیق حاضر نشان می دهد که در میان الگوهای مورد بررسی، دمای مینیمم ، دبی و بارش نقش مثبت در برآورد صحیح جریان رودخانه ها دارند. بطور کلی می توان اظهار داشت که مدل شبکه عصبی مصنوعی، مدلی قوی با توانمندی بالا است که می توان با دیدگاهی مثبت در پیش بینی مسائل هیدرولیکی به آن نگریست بخصوص آنجا که شبکه ی عصبی مصنوعی قادر است قانون حاکم بر داده ها، حتی داده های مغشوش را استخراج نماید و این خصوصیت، برجسته ترین ویژگی این مدل در مقایسه با سایر مدل هاست.