سال انتشار: ۱۳۸۵

محل انتشار: چهاردهمین کنفرانس مهندسی برق ایران

تعداد صفحات: ۶

نویسنده(ها):

نصراله مقدم چرکری – دانشگاه تربیت مدرس ، گروه کامپیوتر
محمد رضا کیوان پور –

چکیده:

بطورکلی سه راهبرد یادگیری متفاوت در مجموعه روش ها ی ارائه شده در حوزه یادگیری ماشین وجود دارد. این راهبردها عبارتند از یادگیری با نظارت، یادگیری بدون نظارت و یادگیری تقویتی. اگرچه این راهبردهای سه گانه پاسخگوی بسیاری از حوزه های کاربردی هستند اما در برآوردن نیاز برخی حوزه ها با چالش های جدی مواجه می باشند. در این حوزه ها برچسب الحاقی به مثال ها دارای ابهام می باشد، این ابهام یادگیری با نظارت را در این حوزه ها با مشکلات زیادی مواجه می نماید. یادگیری چند نمونه ای راهبرد جدیدی است که در سال های اخیر در پاسخ به این نیاز مطرح گردیده است. در این مقاله علاوه بر معرفی و بررسی روش های مختلف مطرح شده برای حل مساله یادگیری چند نمونه ای، الگوریتمی بازگشتی مبتنی بر بخش بندی فضا برای حل این مساله ارائه می شود. این الگوریتم از ساختاری سلسله مراتبی جهت بخش بندی فضا بهره می برد. الگوریتم پیشنهادی %۸۰ پیاده سازی شده و بر روی مجموعه ای متنوع از داده ها مورد آزمون قرار گرفته است. .بر اساس این آزمون، الگوریتم پیشنهادی با دقت بیش ازعمل می کند.