سال انتشار: ۱۳۸۶

محل انتشار: اولین کنگره مشترک سیستم های فازی و سیستم های هوشمند

تعداد صفحات: ۶

نویسنده(ها):

Majid Iranpour – Computer Department , Iran University science & Technology
Sanaz Almassi – Computer Department , Iran University science & Technology
Morteza Analoui – Computer Department , Iran University science & Technology

چکیده:

In this paper, we consider the benefits of applying support vector machines (SVMs) and radial basis function (RBF) for breast cancer detection. The Wisconsin diagnosis breast cancer (WDBC) dataset is used in the classification experiments; the dataset was generated from fine needle aspiration (FNA) samples through image processing. The 1-norm C-SVM (L1-SVM) and 2-norm C-SVM (L2-SVM) are applied, for which the grid search basedon gradient descent based on validation error estimate (GDVEE) are developed to improve the detection accuracy.Experimental results demonstrate that SVM classifiers with the proposed automatic parameter tuning systems and the RBF classifier can be used as one of most efficient tools for breast cancer detection, with the detection accuracy up to 98%.