سال انتشار: ۱۳۸۶

محل انتشار: سی و هشتمین کنفرانس ریاضی ایران

تعداد صفحات: ۳

نویسنده(ها):

A TAGHAVI – Department of Mathematics, Mazandaran University, Babolsar, Iran
A AKBARI – Department of Mathematics, Mazandaran University, Babolsar, Iran

چکیده:

Let H and K are Hilbert space, B (H) and B(K) denote the algebras of all bounded linear operators on H and K, respectively and B+(H) be of all positive operator on H. It is shown that if φ be a linear map from B(H) into B(K) satisfies
1) φ(x2) φ(x)= φ(x) φ(x2),x Є B+(h),
then φ perserves commutativity when one of the elements is normal.