سال انتشار: ۱۳۸۶

محل انتشار: سی و هشتمین کنفرانس ریاضی ایران

تعداد صفحات: ۳

نویسنده(ها):

NASER ZAMANI – Faculty of Sciences, Mohaghegh Ardebili University, Ardebil, Iran.

چکیده:

Let R be a commutative ring with identity and let M be an R-module. In this paper we prove that M is distributive if and only if the set of all weakly p-primal subsets of M is linearly ordered, and, if and only if each submodule of M can be reoresented as an intersection of irreducible isolated components. Some other equivalent conditions for M to be distributive will be investigated.